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On the Relationship Between the R and S Arrays and the
Box-Jenkins Method of ARMA Model Identification

Wayne A. Woodward and H, L. Gray
Southern Methodist University
ABSTRACT
In this paper an extension of the partial autocorrelation function

which we call the generalized pu"tial autocorrelation function is .
investigated. This generalized partial autocorrelation function is useful
in examining the relationship between the R~ and S—-array method of Gray,
Kelley, and McIntire and the Box-Jenkins approach to ARMA model identifi-
cation. Also the generalized partial autocorrelation is shown to be a
useful model identification tool to be used along with the R- and S-arrays.
Also discussed is a reformatting of the S-array into the Shifted S-array
which the authors believe to be easier to use in practice than the S-array.
The methods of this paper are illustrated by means of examples including
an snalysis of the Makridakis (1978) metals series data.

Key words: autoregressive-moving average processes; generalized partial
autocorrelation function; partial autocorrelation functiom;

R- and S-arrays; time series
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1. INTRODUCTION

Gray, Kelley, and McIntire (1978) have proposed an alterna-

tive to the Box-Jenkins approach of ARMA (p,q) model identification

Their method was shown to perform well

based on R~ and S-arrays.

in practice, and it uniquely determines p and q when the true auto-

correlation function is known. Using the Box-Jenkins azproach,

however, when the autocorrelation function is known, unique deter-

mination of p and q is only assured when either p = 0 or q = 0.

In this paper the concept of a generalized partial autocorre-

lation function, a natural extemsion of the partial autocorrelation

function, is discussed. It will be shown that more information con-

cerning the order of an ARMA (p,q) process is available in the

generalized partial autocorrelation function than in the partial

autocorrelation function, even when q = 0. It will also be shown

that the generalized partial autocorrelation function can be obtained

as a ratio of elements in the S-array, and that some significant infor-

mation in the S-array can be lost when the ratio is taken.
!
2. METHODS OF MODEL IDENTIFICATION

Consider the ARMA (p,q) process given by
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where ‘k’ k=1, ..., p and ej. =1, ..., q are real valued con-
stants with ‘P ¢ 0 and eq ¥ 0 and where a, is white noise. Employing
the backward shift operator B, defined by th' xt_l, equation (2.1)
is often written in the form ¢(n)xt = e(B)at where

#(B) =1 - ¢B - ... - ¢pn"

6(B) =1 - 6.B - ... -eqn".

1l
It will be assumed that the two equations

’(!)'1-01t-.-.-¢ptp-0
and

- - - q-
6(r) = 1 elr P eqr 0

have no common roots.
Letting A denote the autocorrelation function at lag k, it can be

shown that 1if xt is a stationary ARMA(p,q) process, then
P = $1Ppq = oo = Qppk_p =0, k2>q+1. (2.2)
In particular, if q = 0, then
Pp = $Ppog = cee = ‘ppk-p =0, k >1. 2.3)
From (2.3) we obtain the wull-kpovn Yule-Walker equations, i.e.,
Py = &) + 4Py + a0t ‘P"P—l

pz - ’101 + ‘z > LR 4 + 0,0,_1

: (2.4)
p? - .lprl + .29’_2 + e + .’
Por1 = 010, + 029’_1 + .00 4 Q’pl




Basic to the Box-Jenkins approach of ARMA model identification is

the partial autocorrelation function given by

L By By s Bp W
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by = . (2.5)

s B o Pr2 P
Py O T . W

el P32 Prz v P

e That is, if it is assumed that the process actually is ARMA (k,0),

'i regardless what the model actually is, then by 18 the Cramer's Rule solu-
tion of the first k Yule-Walker equations in (2.4), with k = p, for the
last autoregressive coefficient. The Box-Jenkins procedure uses

the fact that if X(t) actually is ARMA(p,0) then .kk is nonzero for

| k = p and identically zero for k > p. Also utilized in the Box-

‘i Jenkins procedure is the fact that if the process is ARMA (0,q) then

by = 0s k > q. That procedure involves the inspection of graphs of

: the autocorrelation function amd partial autocorrelation functionms.

1 However, when p aiad q are both greater than sero, the autocorrelation

and partial autocorrelation function do not possess graphs which

uniquely determine p and q by simple inspection.




Upon examination of the Yule-Walker Equations in (2,4) it cam
be seen that if X(t) is ARMA (p,q) then the autocorrelation function
does not satisfy the first q Yule-Walker equations but does sat.isfy
equations q + 1 and following. Using this observaticn we can define

the generalized partial autocorrelation (GPAC) function as

Py Py-1 ' Pype2 Pyn1
P41 Py et Pype3 Py42

ce e @ s e ee .- Leq - @ e ceo @

Pysk-1 Pyek-2 **° Pym1 Py

(2.6)
- Pi=1  ** Pik2 Pyokil

P41 Py et Piok+3 Py-kt2

Pi+k-1 Py4k-2 *** Pim1 Py

Thus, ‘k(i) is the Cramer's Rule solution for the last autoregressive
coefficient using the (3 + 1)® through (3 + )P Yule Walker
equations in (2.4) with p = k. That is, 43’ is the last auto-
regressive coefficient if it is assumed that the process is ARMA (k,j).
It is easily seen that if xt is actually ARMA (p,q) then 0:;) = Qp.
Also, if xt is ARMA (p,q) then 0::) is nonzero for k = p and identi-
cally zero for k > p. In addition if the process is ARMA (p,q) one
would normally use equations q + 1 through q + p to solve for the

parameters. However, one could utilize the p equations q + i through

q+i+p-1lfori=1, 2, ... and obtain the same solution for the
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parameters if the true autocorrelation function is known. Thus, if
X(t) is ARMA (p,q) then ¢§:+i) - ‘P' i=0,1, ... . These properties
make it possible to uniquely identify p and q of a mixed process by
simple inspection of a table if the true autocorrelation function is
known. Granger and Newbold (1977) nmote that Jenkins has also
suggested the use of 0:;) for aiding in model identification.

For each q, q = 0, 1, ... we will consider the GPAC function
0;:), p=1l, 2, ... . Of course ¢;:). p=1, 2, ... is the usual
partial autocorrelation function. 7Two methods of summarizing this i
collection of generalized partial autocorrelation functions for pur-

poses of identifying p and q will be discussed. A first presentation

is the array given in Table 1.

TABLE 1
GPAC  Array
Autoregressive Order
1 2 s k v
(0) (0) (0)
0 ¢ ‘ L N ] L]
. 1 22 ek
; (1) (1) 1)
Average : ’11 .22 o, Fex i
Order x ¥ . .
L .{;) .;;) (2) s

If xt is an ARMA (p,q) process, then the associated array will have

the pattern oﬁovn in Table 2.
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TABLE 2

GPAC Array for an ARMA (p,q) Process

Autoregressive Order

1 p-1 P ptl pt2
©) ©) () ©) ~(0)
Moving 0 | 457" eee 03 01 b fplpr Ype2pe2 o0t
Av‘:“. & . . g . . .
ord.r x . . . . .
= (q-1) (q-1) (¢-1) _(q-1) (q-1)
TH 1 e i e fprpn ez 0t
TR B SO R ) 0 0
S I O S o u

*s = undefined

Thus the procedure is to search for a column p in which constant
behavior occurs and a row q in which the elements are zero for

columns k, k > p. An alternative to this approach is a graphical

procedure in which each row of Table 2 is graphed on the same set of

e

axss and the patteras of Table 2 are viewed graphically. This
approach is similar to the Box-Jenkins graphical approach.

Gray, Kelley, and McIntire (1978) approach the problem of

identifying p and q by defining R and S array elements as the following

ratios:
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nn(f‘) = nn(fn) Inn(l;fn)

Sp(Ep) = By (Li£) /B (£)

where
f‘ fﬁl LN ]
fﬁl fﬂz o000
nn(f-) by 3
f | 1 fm LN ]
]
and
1 1 LN ]
fm fll+1
f £
Eval WL w2
nn-!-l(]" fm) ;
f l 1 fm LN )

mn-1

(2.7)

In their work, f‘ = p, OF f‘- (--1.)"9.l where Pm is the autocorrelation

function of the ARMA (p,q) process at lag m.

A simple iterative

method of calculating the R and S array elements is also available.

(See [4]).

The properties of the S-array upon which the Gray, Kelley, and

McIntire procedure depend are summarized in Theorem 1.
Theorem 1. Let X be a stationary ARMA(P,q) process (p > 0) with

autocorrelation P ‘SBuppose Sn(p') is defined and nongzero for all m.

B
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(a) Fu: some integer m, and some constant C, ¢ O,

S,(Pp 1) # €

iff n = p and L
P
Moreover C, = (-l)p[l -z ¢k]
k=1 s
(b) Suppose Sn(pn) is defined and nonzero for all m. :

For some integer m and constant C2 ¢ 0,

sn(nl) = Cz, m< ni

s (o

“n JII+1

) #c,

*sq=p+l

:lffn-vandml--q-p.

Moreover 02 - -C1/ ¢p.

(¢) For k > n,

sk(p-k-m
and S, (p )« (<1D*" 5 (o
k" =k+mt+l n

iff n = p and m = q.

f: Proofs for (a) and (b) are given by Gray, Kelley, and McIntire
(1978) and in more detail by McIntire (1977). The proof of (c) follows

easily from (2.7).

The S values are placed in an S-array as in Table 3 where we have
employed the shortened notation sn(n) - sn(“‘n)'

)=t

-n+m+1)

P

TABLE 3 :

IS‘ l 1 ces k i
- 8, (-2) cer S (=1)
~24+1 sl(-!.ﬂ.) voie sk(-z+1)
-1 81(-1) ces sk(-l)

0 sl (o) LA sk(o)

1 81(1) LN sk(l)

2

3 5, .. 8
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In Table 4 we present the behavior of the S-array when xt is

ARMA(p,q) and fm -

TABLE 4
(S(eg)) |
. : |
N 1 eo e p p"'l p+2 a0
-!. Sl(-!.) o e Cz u u
-4+1 81(- 2+1) C2 u u
. . ° : u
-q-p-2 $y(-a-p-2) C, u e
-q-p-1 Sl(-q-p-l) eee Gy Fo q non-
constants
-q-p §,(-a-p) eee G,
: 2q non-
> . 2q non- constants 2
% ¥ constants 1 s
+q-p 51('-1'!’) s -cl u 4
q-p+l Sl(q-p+l) ver Gy u u
j sl(j) ece Cl u u

*Note constant stretches

The following theorem establishes the relationship between the S~
arrays and the generalized partial autocorrelation functiom.
Theorem 2. Let Px be the autocorrelation function of a stationary

time series. Then

’&)

= - 8 (P g ) /S Py y) -
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Proof: We will let |A| and |B| denote the mumerator and denominator

determinauts respectively in the definition of 0&) in (2.6). By

definition,
S ePoerg ) | B Poery B CPuey)
sk(p_k-j) nk(p"k*j"'l)nk-i-lu;p-k-j)
= DM E Ay )

Also, it can be shown that

Boag P_ggey) = D By Wiy
In addition [Eil']
- /2 g
B(Ppygey) = DT (Bl amd B G, ) = D)

vhere [ ] denotes the greatest integer function. Thus

k-1
k E B
" 5Py CDEDEED
x
s, (p (3]
ey -1 % 8]
- 1Al
|B)
L@
ek

As a practical point it should be noted that although the
elements of the GPAC array could be calculated via their defining
relation (2.6), their calculation is facilitated using Theorem 2 and

the iterative procedure for calculating S-array elements.
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Before proceeding further it should be pointed out that a
result similar to that of Theorem 1 holds when fn - (--1)“;:0lll (see
[4]). Gray, Kelley, and McIntire recommend the inspection of the
S-arrays both with f- - p and with f. = (-1)‘9‘ since the model
identification behavior in the presence of noige is often clearer
in one of the arrays than in the other, yet neither is uniformly
better than the other. It does appear that for low frequency data it is
better to take fn = (--1)"'3'Il in computing Table 3 and for high frequency data
S-arrays are usually better gt E; Sn where Bm will be defined in Section 3.
Theorem 3 establishes the relationship between the generalized
partial autocorrelation’ function and the S-array with fm - (-1)‘9‘..
Theorem 3: Let P be the autocorrelation function of a stationary

time series xt and let fm = (-1)npn. Then,
o) = ™ s ) I8 ) -

Proof: It is easily shown, that when f. - (-1)‘9..

= Sp(E pgey) |a%|

=
Sk(f_kPj) |B#|
vhere |A*| and |B*| are defined as were |A| and |B| in the proof of
Theorem 2 with Pa replaced by 1% n Through row and column
operations on |[A*| and [B*|, it can be shown that |A*|/[B#| =
(-1)%|A]/|B| and the result follows.

Theorem 3 shows that the GPAC array can be calculated

from the S-array at " Py OT fn - (-1)'9..
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3. MODEL IDENTIFICATION USING THE GPAC ARRAY-
ILLUSTRATIVE EXAMPLES

In this section we will illmtutﬁe the use of the GPAC array
through th%-u examples. In these examples the autocorrelation
function will be estimated based upon a realization of length T
by '

T-m = -

:Zo (X=X (X, - D)

Pm " T - 2 4
I -0

It will be seen that the patterns in the GPAC array, although somewhat
disturbed, are still very useful in identifying the order of the model.
Example 3 indicates a caution which must be exercised in the use of
the GPAC array for determining the moving average order.

Finally, before proceeding to the examples it should be mentioned
that if p = 0, the Box-Jenkins procedure, the Gray, Kelley, McIntire
procedure, and the GPAC procedure all must utilize the c;xtocomhtion
function with its property that P " 0, k>q+1.

Example 1. Consider the process

xt - 1.3‘ xt.l + 065 xt_z - ‘t. (3.1)

In Table 5 the GPAC array using the true :utocorrelation function P
is presented. The identification as an ARMA (2,0) process is clear
(0) e b ) e -
due to the fact that ‘2-0-1,2-0-1 0, i=1, 2, ... and that 022 .65,
i=0,1, 2, ... « In Table 6 the sample generalized partial

WPo—
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autocorrelation function array is given based on a realization from
(3.1) of length 100. The patterns which occurred exactly in Table 5
are still visible in Table 6, i.e., |3§3’2ﬁ| <27, 1=1, ... 8
and 32) & -.65 1=0, ... 5. Of course the process is strictly
autoregressive and it is clear that one could have identified the
process as ARMA (2,0) strictly on the basis of the first row of
Table 6 which is the partial autocorrelation function. However, as
will usually be the case, the constant behavior, which occurred in
the second column in this example, is the most visible pattern. In
any event the combination of both is clearly more informative than
either alone. In Example 3 we will deal more completely with the
comparison of the model identification capabilities of the constant
column behavior and the zero row behavior in the GPAC array.

TABLE 5

True Generalized Partial Autocorrelation
Function Array for Series (3.1)

Autoregressive Order

1 2 3 4 5 6 7 8

0 .812 -,650 .000 .000 .000 .000 .000 .000
b § 540 =-.650 ut* u u u u u
Moving 2 133 =-.650 u u u u u u
Average 3 -3.458 -.650 u u u u u u
Order 4 1.528 =-.650 u u u u u u
5 915 =-.650 u u u u u u
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TABLE 6

Sample Generalized Partial Autocorrelation Function Array
for a Realization of Length 100 from Series (3.1)

Autoregressive Order

1 2 3 4 5 6 7 8 |

o .821 -.650 .029 ~-.114 ~-.075 -.127 -.03 .091 3

1 .562 -.628 -2.487 =-.133 .116 -.107 =-.370 .074 s |

Moving 2  .209 -.702  .392  .232 -,196 -.170 -.160 .012 |
Average 3 -1.894 -.715  .873 1,143 =-.738 =-.278 -.167 =-2.244 £l
Order 4 1.901 -.670 =-.276 =1.067  .450 =-.561 =-.343 .48l
5 1.195 -.720 3.137 -1.292 -1.692 ~-.281 .480 =-.052

Example 2. Consider the process

X, -15X +121X ,- 455X ,=a + .2a ,+ .92 , (3.2

t-3 t
In Tables 7 and 8 are given the GPAC arrays based on theoretical
autocorrelations and sample autocorrelations from a realization of
size 300 respectively. In Table 7 the fact that 0;3 34 " 0, i =
L ]
1, 2, ... and that ¢§§’ - ogg*‘) = 455, 1 =1, 2, ... indicates that

P=3and q = 2, These patterns again are also quite clear in Table 8.

TABLE 7

True Generalized Partial Autocorrelation

Function Array for Series (3.2)
Autoregressive Order
1 2 3 4 5 6 7 8

0 .845 =-.706 .414 .299 -.304 -.145 .245 .062

1 0606 ‘0458 .836 0683 -0‘3‘ -.6‘6 0279 -“8
m 2 «391 -.070 .‘55 .000 .000 .000 .000 .000
Average 3 ,328 2.073 .455 u* u u u u
Order 4 1.356 -.119 .455 u u u u u

5 1.632 5.367 .455 u u u u u

»

u = undefined
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TABLE 8
Sample Generalized Partial Autocorrelation Function Array
for a Realization of Length 300 from Series (3.2)
Autoregressive Order
1 2 3 4 5 6 7 8
0 . 819 e 725 . 3“ . 315 e 16‘ - 177 . 1‘5 . 105
1 .528 =-.540 .,930 4771 -.49 -.307 .270 .271
mﬂns 2 . 165 e 309 O ‘58 e 017 . 101 . 016 . W . 037
Average 3 -1.124 -~.204 .452 2.850 .104 ~.017 -.123 .045
Order 4 «296 -1.048 .468 .026 .092 -1.702 -.316 .072
5

-4.174 -1.596 .467 -1.771 .145 .005 .294 .393

Example 3. In Table 9 is presented the GPAC array using the true

autocorrelation function for the process
xt - 019 xt_l + 075 xt_z = ‘t - 05 .t"l. (303)
In that array it should be noted that

o) e 75,320 ama o =0, k22,

Since the process is ARMA (2,1) we would have expected Qg) - - ,75,

J21and Og) ¢ - .75. This example, however, points out that the

th

constant behavior in the p column of the GPAC array of a sta-

tionary ARMA (p,q) process may begin prior to row q. In other words

if the process actually is ARMA (p,q), with ’p the pch autore-

gressive coefficient, and it is treated as an ARMA (p,q-1), for

th

example, the estimate of the p  autoregressive coefficient in this

case may also be ’p' Thus, the user must exercise caution when
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using the GPAC array to determine q. The constant behavior in a
column of the GPAC a&ny should be accompanied by the appropriate
zero behavior. It is clear that for a stationary ARMA process,

¢£§) -Ofork_>_p+1nd¢§:) ¢ 0 if and only if the process is
ARMA (p,q). Thus, in the array in Table 9, although the comstant
behavior is misleading, the zero behavior correctly identifies p and
q. We will formally state the results of the above discussion in
the following theorem. |

Theorem 4. Let X be a stationary ARMA(P,q) process (p > 0).

) I
(a) D L j2>aq.

(b) Suppose that the nth order Yule-Walker equations are non-

singular. For some constant m, ¢$) =0, k > n+l and ‘t(‘:) ¥0
iff n = p and m = q.

Referring back to Theorem 1 and the corresponding results for

- (-l)kpk (see [4]) it is seen that the constant behavior in the
S-array is necessary and sufficient. In Table 10 is presented the 2':"l
column of the S-array with fk = Py from which the GPAC array in Table 9
was calculated. We see that, as would be expected from Theorem 1, the
ambiguity seen in Table 9 is not present in Table 10. The additional
constant term ia Table 9 was due to the fact that 1.749/2.333 =
1.560/2.080 to 3 decimal places. It is obvious that sequences of con-
stants in the GPAC array due to constant ratios with numerators and
denominators which vary, can in fact occur in any column of the GPAC
array. Thus, the S-array should always be checked when considering con-
stant behavior in the GPAC array. In Section 5 we will demonstrate that
the zero behavior of GPAC can also be misleading. This problem is also

alleviated via the S-array as we will see.




Moving
Average
Order

i

£

TABLE 9

Theoretical GPAC Array for Series (3.3)

Autoregressive Order

17

1 2 3 4 5 6 7
0 .000 -.750 -,325 -.157 -.078 -.039 -.019
1 -2139.989 =-.750 -.000 .000 .000 .000 .000
2 190 -.750 u* u u u u
3 -3.750 =-.750 u u u u u
4 .390 -.750 u u u u u
5 -1.733 =-.750 u u u u u

*u = undefined

TABLE 10

Column 2 from Theoretical S-Array with
fk = for Series (3.3)

Lag Column 2
-7 2,587
-6 2,587
-5 2,587
-4 2,587
-3 2,587
-2 2,334*
-1 1,751%
0 1,940
1 1.940
2 1,940
3 1.940
4 1.940

-.010
.000
u

€ e e
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4. THE SHIFTED S-ARRAY

The present investigation of the GPAC array has led to a
reexamination of the S-array. For a stationary ARMA (p,q) process,

th

the constant behavior in the p column of the GPAC array relates

closely to the constants cl and c2 in the pth

colum of the S-array.
The "zero" behavior in the GPAC array in turn corresponds to Theorem

1(c). That is if xt is ARMA (p,q) then for i = 1, 2, ... we have

~te - -1} @ .
sm(p-p-i-q) t ® and sp+1(°-p-1-tq+1) (-1)7C; while Soti,pH

- spﬂ(p-p-i-l-q*-l)/spﬂ(p-p-i-q) = 0. Gray, Kelley, and McIntire
(1978) recommend utilizing the information in column p + 1 in the
identification of an ARMA (p,q) process, but they do not suggest
utilizing the behavior described in Theorem 1(c) for i > 1. In fact
the D-statistic (see [4)) utilizes colummns p and p + 1 only (in
addition to column p + 1 of the n-u'ny).v Thus the S-array approach
uses the constant behavior and the first zero in the row behavior of
the GPAC. It seems that one is in fact ignoring useful model identi-
fication information by not considering the behavior in the columns
past the p + 1 st columns of the S-array. The authors are currently
considering a modification of the D-statistic with these comments in
mind. This point will be commented on further in Sectiomn 5.

The S-array, however, is not presently designed to easily
facilitate such an examination of the Theorem 1(c) behavior as ome
must proceed diagonally through the array to examine this behavior.
To alleviate this problem, a modification of the S-array, to be
called the Shifted S-array will be introduced. This Shifted S-array
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was first proposed by G. Kelley in 1977, Letting sg(f ) denote the

3
element in the kth column at lag j of the Shifted S-array, we have
SECEY) = S (£, uy)-
Thus, Theorem 1 can be restated as follows.
Theorem 1': Let xt be a stationary ARMA(p,q) process (p > 0) with
autocorrelation P’ Suppose that S:(pn) is defined and nonzero for all m.
(a) For some integer By and some constant cl ¢ 0,
%* -
Sn(om) Ci» m 2 my

SR, 1) # C;

m,
iffn-pandmo-q.
Moreover C, = -1)P[1- k§1¢k].

(b) For some integer m, and constant C, 0,

S;(om) = Cz, m<m

S:(pmlﬂ) # ¢,
1f£n-pandm1--q-1.
Moreover C2 = -01/ ¢p' .

(c) For k >mn, Sk(p_ ;) = ¢ = and
skGo) = (-1 sa(o )
iff n=p and m = q.

Thus, if xt is a stationary ARMA (p,q) process, then in columns

p+i,i=1,2, ... the value ¢ = will occur at lag -q-1 and

(--1)"(:1 will occur at lag q. In addition to simplifying the Theorem

1(c) behavior, Theorem 1° and Table 11 indicate that the constant

behavior will also be simplified. In the Shifted S-array for a

stationary ARMA (p,q) process the 2q non-constant terms will always

be the elements from -q through ¢-1 regardless of p. That is, the

nonconstant behavior will always be centered around lags -1 and 0.
This will simplify the use of the information in the S-array and will

eliminate the need for the "starred quantities” to assist in locating
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f TABLE 11
Shifted S-Array with £ = o_
’ vhere X is ARMA (p,q)
n
n 1 e o o p p+1 XX p+1 oo
.q.z cz u u
-q—l cz 4o cee deo
-q . \ \
: Non- Non- Non- :
-1 s§(-1) Constants |  constants | constants 1
0 54(0) 4 ( ( ;
1 SI(+1)
i |
l s < asd
= qtl . ¢ = .
é . q+2 01 u u
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the correct position for inspection of a particular column. In Table
12 is presented the theoretical Shifted S—-array for the ARMA (3,2)
process of Example 2 while in Table 13 is presented the Shifted
S~array for the realization of the length 300 upon which the GPAC

} array in Table 8 is based. From Table 12, the : « behavior occurs
at lag -q-1 = -3 beginning in column 4. In Table 13 this behavior
is manifested in the "large" numbers 268.053, -42.435, -319.257. At

lag q = 2 in columns 4, 5, and 6 the quantities 4.494, -4.300, and

4.454 respectively correspond to the (-1) icl behavior of Theorem

1(c). These observations along with the two sets of near constants

in column 3 of Table 13 identify the process as an ARMA (3,2). Of

course the nonconstant behavior is centered at the line drawn between

lags 0 and -1. It is the opinion of the authors that the Shifted

[}
S-array presents the information in the S-array in a format which is

easier to use in practice.

5. A COMPREHENSIVE EXAMPLE

In this section we.uploy the model identification techniques

mentioned in this paper, namely the GPAC array and the Shifted S—-array

to model the Makridakis (1978) metal series data. It is hoped that
this example will demonstrate the use of these techniques in modeling,
rather easily, a series which has been difficult to handle with
previous techniques.
The metal series data consists of 144 monthly values of carbon

Makridakis has fit the model

steel monthly shipments from 1961-1972.
- 12

1-B) Y =@1-0B)(Q -0, a, (5.1)

wvhere Yt - xt - 3082 and xt is the data. He reports that this model
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-6 =1.613
-5 =1.737
-4 =4.052
-3 -3. 556

TABLE 12

Shifted S-Array for Model (3.2)
sg -83 8*‘

3.552

1.247 -9.154

23.860 -9.154 u

2.915 =-9,154 u u
22,437 -9.154 i it
506“ "7-573 1. ‘70 6.”6
4.456 -10.750 -10.450

22

-7. 911

0
1 "1. 606
2 -1.,391
3 -1.328
& -2.356
5 =2.632
6
7

"6 “e 760

-5 =4.375

"‘ e 110

‘=3 =7.064

3 -2 ~2.893

3.148 -4,452 3.122

2.606 -6.334 -1.004 -

1.578 -4.165 4.165 -
-6.044 -4.165 u

2.838 -4.165 u
-6.691 -4.165

3.598

TABLE 13

Shifted S-Array for Realization
of Length 300 from Model (3.2)

S%

3.467
2.386
1.347
6.459
6.664
5.049
4.329

5%

-9 .505
-9,472
“9 . 579
-7.264

St

8.022
268.053
-1.905

-48.460
-62 . 535

10.998 -

14.689

-1.090
4.165

-319.257
2.990
16.074

"1.528
"1. 165

~-1.296
3.174

3.138
2.728
2.059
1.319
1.412
3.807
3.322

-6.752
-4,334

4.494
-22.865
4.211

-2. ‘1‘
'5 . “35
"" ° 300
-5 . N6

2.840
919
4.454

- e e e o
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does not forecast as well as the random walk mc. .1, an apparent

I
p
T i i
i

paradox since he believes this to be the optimum model. Parzen (1979)
also analyzes the data and suggests the solution to the paradax is

that the model of Makridakas is not satisfactory. Parzen identifies

the AR (2) process
G.2)

i o Y G

as the best choice according to Parzen's (1974) CAT (criteriom auto-
regressive transfer) criterion. The same result is obtained using
Akaike's (1974) FPE criterion. However, Parzen notices that the

i sample spectrum does not agree very well with the spectrum of the

AR (2) model (5.2) and that the second choice according to CAT is an
AR (13) (The second choice by FPE is AR (3).). Moreover the spectrum
obtained from the fitted AR (13) is quite compatible with the sample

spectrum. For this reason Parzen prefers the AR (13) model even though

it is not selected as best by either CAT or FPE.

A plot of the metals data is given in Figure 1 and the sample
autocorrelations are shown in Figure 2. Table 14 shows portiomns of
the shift.d S-array for the data \dth'f‘ = (-l)man. The array is evaluated

with fn = (-1)‘6‘ because the data is clearly predominantly low frequency

(see Gray, Kelley, McIntire (1978)). For that array the D-statistic

suggests that the array be examined for the possibility of an.

ARMA (1,1), ARMA (1,2), ARMA (1,6) or an ARMA (13,1) or AR (13).
Examination of the shifted S-array immediately suggests from columns

1 and 13 that the process is ARMA (13,1) with a first order factor of

approximately (1 - .9B). Moreover since the two nonconstant values

TN g TorrrTo-—Te

e 2 el
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Figure 1. Makridakis Metals Data ]
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in column 13 are close to the "constants" of column 13 it is clear
that the moving average term is not large. In keeping with the pro-
cedure of Gray, Kelley, and McIntire, the data was transformed by

estimating the coefficient of B in (1 -~ ¢B) by

5 )+ 5,(2) + 5,3
’ - . 1 : % 09 .

TABLE 14
1 Portion of Shifted S-Array for
Makridakis Metals Series
2 (= ne |
Uy = (1) o) q
B ' ey e S, Sts Sty Sty |
-5 =2.240 .091 -+399 -3.,079 2.143 -=5.921 4.662
-4 =2.134 406 -1.313 1.780 2.755 =400 2.006
‘3 -2.”6 -30‘58 3-731 ‘4-595 3‘020 -2.152 1017‘
-2 =2,048 -4.468 18,637 .969 3.263 -17.066 1l.67¢
k & -1 -2.493 -3.168 -30.088 ... =3.951 3.008 8.151 10-565
3 ‘
| 0 -1.670 1.093 -1.135 815 -.641 696 -=.653
S 1 -1.95% 1.25% -1.51 -.201 -.953  1.156 ~-.197
"j 2 -10 829 1. 149 50814 1-236 -0935 -10311 e }
‘ 3 -1. 882 o, o‘24 0117 ol .‘88 b 731 e -10535
2 4 -1.807 -.081 <4.636 1.203 =.657 1.229 -1.344

e

eq 2
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It is of course more conventional to difference the data in such
circumstances as this. However, the data clearly does not indicate
a strong tendency toward nonstationarity but does suggest the possi-
bility of a root near (.9)'1 in the characteristic equation. Since
as has been demonstrated by Gray, Kelley, and McIntire (1978), a
factor of the form (1 - .9B) is often close enough to the non-
stationary region to produce a nearly singular autocorrelation
function, the S-array of (1 - .93)!t should be examined as confirma-
tion of the tentative identification of the process as an ARMA (13,1).
Although in most problems it makes little difference at this stage of
the identification process whether one transforms the data by the
difference operator 1 - B or the operator 1 - .9B, these authors have
found some cases vhere this seeming small change in the operators can
have a large effect. The shifted S-array of (1 - .93)!t is shown in
Table \15. The suggested model there is clearly an ARMA (12,1) and
the moving average effect is obviously not large. This is consistent
with our initial identification of an ARMA (13,1). Thus the identified
model is

¢(B)X, = (1 - 6,B)a, (5.3)
where

0B) = 1= 4B - 4,8° - ... - ¢, 800,

Estimation of these coefficients shows only 01. 012, 013 and 01 to
be significantly different from zero and hence suggests the parsimo-

nious model
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TABLE 15

Portion of Shifted S-Array for z, = (1-.98)X,

wvhere Xt is the Makridakis Metals Series

£, = 1%
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X5 ey 3

s sy s s, s, Sty st ot
-5 -.187 <252 .657 2.007 -1.051 3.166 -1.475 1.989
-4 -,264 3.037 1.534 -3.219 -1.239 - ~1.746 -2.014
-3 1.298 -1.789 .410 4,449 -1.437 1.504 ~1.848 =6.442
-2 2.560 -7.586 =-.570 -1.381 -1.422 -43.835 .258 4.163
-1 1,188 5.875 11.809 ... 2.056 -1.181 -2.534 ~4.810 4.054
0 -.543 .598 -.569 -.397 «297 -.337 315 =-.292
1 e 719 . ”3 . 092 . 220 . ‘9‘ -3 480 e 054 e 350
2 -.555 -1. 311 bt} 075 - 973 0‘96 "9. 085 . 372 bt 387
3 .39 -.252 -1.514 1.040 .401 -.069 498 -,260
4 .230 4.512 -.802 =1.444 .356 -.584 .485 =3.975
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a- ¢8)Q - .usn)virt - (- oB)a,. (5.4)

Initial estimates for ¢, ¥ and 6 are

~ ~ -

0.09. *--35, e-.‘so

The spectral density of the ARMA (13,1) model fitted from (5.3) is shown in

Figure 3. This is essentially the same spectral density as that found by 2 %

Parzen and as mentioned is quite consistent with the sample spectral density.

Thus far we have not considered the generalized partial auto- ’
correlation in this example. This is to some extent due to the fact |
that as mentioned before, its column behavior is not sufficient to

characterize an ARMA (p,q) process, even though its row behavior does

R T N

characterize such a process. Nevertheless the generalized partial
autocorrelation is quite useful and these authors always consider the

GPAC array as well as the S-array. In this way there is no danger in

i it G

misconstruing the constant column behavior found in the GPAC array.

In this example the GPAC presents the model identification quite nicely
by and at the same time shows why the zero behavior in the rows should not
be used alone for identification, even for AR (p) models only. Table 16
shows the GPAC for the metals data and Table 17 for (1—.93)xt. Row 1

of Table 16 clearly Mtntu why CAT and FPE chose an AR (2) model.
A That is, since Og?:)’ through Qﬁ?um all approximately zero it is not

' surprising that CAT and FPE pick an AR (2). On the other hand note that
column 2 in the GPAC is not even approximately constant and hence the

long string of seros in row 1 is only suggestive of a number of zero

A
B Rl a2y 490 % 4
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coefficients prior to ¢ P’ That is, the row and column behavior
together suggest the process is not AR (2) but does have a number of
zero coefficients following 02. Note this is also clearly seenm in
the shifted S-array where column 2 showe no constancy behavior. In
that array the zero behavior, seen in row 1 of the GPAC array, is
obtained from the ratio of the elements s:(—l) and s:(O). i.e. those
on each side of the center line. Thus the S-array or shifted S—-array
and GPAC use both the row and column behavior for identification of

a process. The information gained by this procedure is clearly
demonstrated in this example where one can easily see that the con-
stant column behavior is influenced by all of the coefficients even
if a number of zeros lie between the first and the last autoregressive
coefficients. However the zero behavior of rows gives no information ]

as to the values of ‘k for larger values of k, i.e. those further out

than the zeros. The ARMA ‘(13.1) identified by the shifted S-array is
also vividly displayed by the GPAC array. Note that the ARMA (13,1)

is the only choice which shows both the >roper row and colummn behavior.
Nevertheless the large values .954, .826, .882, etc. in row 1 suggests,

for reasons already mentioned, that it is a good idea to transform the

data to more stationary behavior (as we did) before making the final
identification.

In concluding this example we make two final comments. The D-
statistic which has been recoumended [ 4 ] as an aid in directing
the investigator to salient patterns in the S-arrays measures jointly
both the constant column behavior of the S-array and the zero row
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behavior currently measured by such statistics as CAT and FPE. It !

is probably overly sensitive to pairwise comstant behavior and the s
f very first "zero" in the zero behavior. As mentioned earlier some
modifications of this are now underway and it is hoped that it may I
eventually evolve as more than a guide to inspection of the S-array
but as a dependable estimator of p and q for the ARMA (p,q) process.
Finally as a word of caution, the GPAC is a very useful measure,
however Example 3 which demonstrates that its column behavior is not

sufficient to identify q is not pathological and these authors have

encountered a number of real data sets where the behavior demonstrated
in Example 3 was observed. When these observations are coupled with

the present example which demonstrates the zero behavior alone can also be

MO Ty e o e

misleading, it is clear that the S-array must be consulted, being
the only measure which uniquely characterizes the ARMA (p,q) by both
its column and row properties. Actually column and diagonal properties

is a better description of this characterization in non-ghifted S-

e

E arrays. However, believing that shifted S-arrays are easier to "read"
Ev for most users, our future reference to S-arrays will mean -hi.fted

S-arrays.

ey —p—

6. CONCLUDING REMARKS

S—pe——

| In this paper we have demonstrated the use of the generalized ;i g
3 | partial autocorrelation for identifying an ARMA (p,q) model. In the
process we have shown that it is the natural extension of the Box- $

L

ik Jenkins method. In addition we have demonstrated the relationship
: 7 between the S- and R-array approach of Gray, Kelley and McIntire and
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the generalized partial autocorrelation. That is, we have shown that
the generalized partial autocorrelation, much like the D-stsatistic,
represents a condensation of the information in the S—array. However,
it is also shown that the information in the GPAC array can at times
be misleading. We thus recommend the use of the GPAC array along
with the R- and S-arrays and the D-statistic. Actually we recommend
the use of a slight modification of the S-array which we call the
shifted S-array because it presents the information in the S-array in

a more easily interpretable form.
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